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Abstract An efficient rejection-free Monte Carlo algorithm for lattice systems is presented. 
In the microcanonical Monte Carlo technique. the sampling time grows prohibitively large due 
to a high rejection rate at low energies, as the size of the system increavm. In this paper we 
repoLf on an algorithm which improves the sampling efficiency enormously at low energies by 
selecting only sites which are acceptable for a Uial move, thereby reducing the rejection rate to 
nil. 

1. Introduction 

Recently there has been an increasing number of studies which use the microcanonical 
Monte Carlo technique (MCMCT) [ 1-41, The advantage of the McMCT is that we can calculate 
whole (continuous) thermodynamic functions instead of thermodynamic points with much 
less effort than that needed to calculate a single thermodynamic point in the conventional 
Monte Carlo technique [3]. As we pointed out in [3], one of the difficulties in the MCMCT 
is low-temperature (microcanonical) slowing down and not critical slowing down, and we 
suggested a remedy to the problem. 

Recently Care 141 used the MCMCT to calculate the density of states of the Blume-Capel 
model. In order to overcome low-temperature slowing down he simply reduced the width 
of the energy band of the microcanonical ensemble. This method is useful in some cases 
especially for continuous systems (in contrast to the lattice system). However, it necessarily 
incurs repeated sampling due to rejected moves which would inevitably lower the precision 
of the Monte Carlo (MC) data. 

In this paper we present a method which improves the sampling efficiency enormously 
at low microcanonical temperatures, where the density of states has a large slope, without 
incurring repeated sampling. In this method we bypass all the trials, which would be rejected 
if we selected random sites for trial moves, by maintaining a table from which acceptable 
sites for hial moves can be read off. A similar technique has been used in the conventional 
MC algorithm [5-71. However, as we will show later, this technique becomes best suited for 
the MCMCT. We begin by reviewing the standard MCMCT in the next section and examine 
the origin of the low-energy slowing down. In section 3 we describe the rejection-free 
technique and present a test result, and in the final section we present a summary together 
with a few remarks conceming the new technique. 

2. Standard procedure and origin of the low-energy slowing down 

In this section we will briefly review the standard MCMCT and discuss the origin of the 
low-energy (or equivalently low-temperature) slowing down. We will take a spin-; king 
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model of N spins in the absence of an external field as an example 131. The energy of the 
system can be written as 

where Si is the spin variable assuming &1 values, J is the exchange energy and (i, j) 
runs over interacting nearest-neighbour pairs i, j .  The canonical average {A) of any 
thermodynamic quantity A((S;]) is defined by 

2N 

 si^ 
(A) = CA((Si))exp(-BE([Sil)/Q (2) 

where p is the inverse temperature l / k s T  with Boltmann's constant k ~ ,  and Q is the 
partition function defined by 

We can rewrite equations (2) and (3) in slightly different forms as 

(A) = ~R(E)exp(-BE)Xi(E) /Q 
E 

and 

where X(E) is the microcanonical average of the variable A defined by 

and R(E)  is the density of state (Dos) at E. The prime in equation (6) indicates that the 
summation is over microscopic configurations with a fixed E. From this point of view, the 
calculation of (A) is reduced to the calculations of R(E) and the microcanonical average 

In the MCMCT, we set up a random walk in the configuration space restricted to a 
narrow energy band which consists of few energy layers. We select a single spin out of 
N spins either randomly or sequentially and attempt to flip it. Whenever the attempted 
move takes the walker to a spin configuration [Si] which lies within the energy band the 
move is allowed; otherwise the move is rejected. x ( E )  are calculated simply b$ sampling 
As whenever the walker visits the layer at a given fixed E. That is X ( E )  = E& Ax/&, 
where A t s  are samples of the dynamical variable A and the Nd is the number of data points. 
R(E)s are estimated consecutively by the ratio Nd+/Nd to R(E + AE) = n(E)Nd+/Nd.  
In the above Nd+ and Nd are the number of visits at energy layer E and E + A E ,  two 
consecutive energies in the band. 

After a sufficient number of data points are collected we move to the next energy band 
whose lowest energy layer overlaps the highest energy layer of the band we just left. By 
this method we can calculatex(E)s and Q ( E ) s  for all energies E .  For R(E)s one needs to 
know R(E0) of the lowest energy layer of the lowest band. However, the unknown factor 
is irrelevant in the calculation of (A) since the factor cancels out in the average given by 
[4]. It is only relevant to the calculation of the absolute entropy or the free energy. 

- 
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In the early version of the MCMCT, the energy band consisted of a few energy layers, 
for example, four in [2]. The samples are taken at a large interval in order to avoid repeated 
sampling of the same configuration. The problem of repeated sampling is especially severe 
where the rejection rate is high. In the retined M C M n  reported in [3] there is a new device 
to avoid this very problem. 

In order to illustrate the refined MCMCT, which we will call the standard M C M ~  hereafter, 
we will rewrite the energy of system (1) as 

(7) 
where the constant term -4 J q N  has been dropped. In the above, q. N' and N++ are the 
coordination number, the total number of up-spins, and the total number of interacting up- 
spin pairs respectively. In thii description it is easy to recognize that the energy of the system 
is separated by A E  = 4J. The standard M m a  is based on the fact that there is a number 
of classes of sites, classifying sites by the change of energy 6E(= -AE(SN++ - ;qSN+)) .  
In a lattice with periodic boundary conditions the number of classes is q + 1. For the square 
lattice there are five classes of sites, and we can number them as shown in table 1. 

E = -4J(N++ - &N+) 

Table 1. Classifications of spins. The second column is the state of spin to be flipped. The 
third column is the number of nearest-neighbour spins thhat are up-state. The last three columns 
represent the change in the total number of up-spins, the change in the total number of up-spin 
pain and the change in the total energy. E,, - E d d ,  respctively. 

Number of s in up 
Class Spin nearest neightok BN+ 6N++ 6 E  = -AE(dN++ - 4 q S N + )  

1 UP 4 -1 -4 2 
2 u p  3 -1 -3 1 
3 UP 2 - I  -2 0 
4 UP 1 -1 - I  -1  
5 UP 0 -1 0 -2 
5 Down 4 1 4 -2 
4 Down 3 I 3 - I  
3 Down 2 1 2 0 
2 Down 1 1 1 1 
1 Down 0 1 0  2 

From table 1 we can easily see that the spin-flip trial is always successful at the middle 
layer if we make the energy band consist of at least q + 1 (which equals five for the square 
lattice) layers. This is because any site belmgs to one of the q + 1 classes and the spin 
flip only causes the total energy change bounded by the two units above and below. If 
the current position of the random walker is in the middle layer the spin-flip move always 
leaves the walker within the energy band. If we take samples at the middle layer, the 
samples are always from fresh spin configurations. In order to calculate O(E)s ,  we have 
to take samples of two consecutive energy layers. For this reason we constlllct an energy 
band consisting of q + 2 energy layers and take samples at the middle two layers. By this 
elaboration only can one attain the high efficiency and precision reported in [3]. 

In summary, in the standard MCMm we set up a random walk in the configuration space 
restricted to a narrow energy band given by 

Ei - &AE Q E ( [ $ ) )  Q E, + ( i q  + 1 ) A E .  (8) 

E ( ( $ ] )  = E, and E ( ( S i ] )  = E, + A E .  (9) 
For data collection we use configurations which satisfy 
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In a sense, the standard MCMCT is already a rejection-free tecfmique, at least at the 
energy taking middle two layers. This is accomplished by introducing padded layers above 
and below the data collecting layers. The sole purpose of creating the rejection-fiee layers 
in the standard MCMCT is to guarantee that the samples taken are from fresh configurations. 
However, in order to apply the rejection-free (RF) MCMcr we are proposing in this paper 
that the above prescription is imperative, as we will see in the next section. 

At low energies, the density of states (DOS) grows rapidly as the energy increases or 
the microcanonical temperature (the inverse of the rate of the increment of the logarithm 
of DOS) is very low. merefore. at low mkrocanonical temperatures, any unbiased random 
walk would be likely to put the system at the highest energy layer and any attempted spin 
flip would most likely make the system move out of the upper boundary of the energy band. 
We can understand this situation more vividly if we look at the configurational space. , 

At low energies, the majority of spins are aligned in one direction, say the up-direction 
and only a few spins are excited, that is in the down-direction. If we choose a spin site 
randomly, we would most likely select one of the aligned spins which belong to class one 
of the first row of table 1. The spin-flip move will most likely move the walker to a 
configuration belonging to the layer two units above. The move in turn rapidly puts the 
walker at the topmost energy layer in the band. At this point another randomly selected 
spin site would again be Iikely to be one of the aligned spins belonging to class one and 
the trial move on this spin would be likely to be rejected, since it put the walker out of the 
band. There would only be a small fraction of the number of spin sites near or at excited 
spins for which the trial move would be successful at any time. This fraction gets smaller 
as the size of the system grows larger. In general, this is the source of slowing down of the 
MC sampling at low energies. 

3. Rejection-free technique and a test result 

In order to overcome the difficulty described in the previous section, we introduce an RF 
technique. We only set up a random walk in the configuration space exactly in the same 
way as described in the previous section. The CNX of the new technique is to maintain a 
pair of tables: one to look up which sites are successful for a trial move and the other being 
a cross reference table to look where the specific sites are located in the look-up table and 
to update the tables with minimum effort. We only select for a spin flip out of acceptable 
sites thereby eliminating any rejectable trial move. 

Initially we can scan the whole system by going through every lattice site examining 
the spin states of the site and its interacting neighbours. We then classify the sites into the 
q + 1 classes as in table 1 and put them into one of the sites of the look-up tables. From 
the table we can easily tell which sites are acceptable or rejectable. For example, for the 
square lattice if the walker is in the configuration space belonging to the topmost layer in 
the band, the sites belonging to classes three, four and five are acceptable since the move 
will keep the walker within the energy band. 

As long as we take data from the middle two layers, the path of the random walk and 
the MC data are exactly the same as those of the standard MCMCT of the previous section. 
Suppose at a certain point of the random walk there are Na acceptable sites. In the standard 
M C M ~  we select a spin out of N with a uniform probability, and whenever we select a 
rejectable site we pass and select another spin until we hit one of the acceptable sites. Only 
then we do move on to a new spin configuration. In the IIF MCMCT we select a spin out of 
the Na acceptable sites with a uniform probability, eliminating all the wasted trial moves 
of selecting rejectable sires. In either procedure, since the probability of moving to a new 
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specific spin configuration is the same, the path of the random walk is exactly the same. 
Now if we were taking data from every layer of the band, then we need to know how 

many times the trial move would have been wasted in the standard procedure. This is 
because this number must be multiplied as a weight in the calculation of the average 2 in 
the R F  procedure. This information is not available in the RF procedure. However, if we 
take data from the middle two layers only, we know this weight to be unity since there is 
no rejectable site in these two energy layers! This is the reason why we should keep the 
energy band given by (8) and take data from configurations which satisfy equation (9). 

Once a new configuration is generated, we have to update the look-up table. Since 
the new configuration is modified by a single spin flip, the change of the configuration is 
limited to a change in a small number of lattice sites. Therefore, it is possible to update 
the look-up table by a procedure consisting of a finite number of steps. In the appendix we 
present one such algorithm where the updating procedure consists of a maximum number 

Since the computing time for the updating procedure in the RF algorithm depends only 
on the coordination number and not the system size, while the rejection rate in the standard 
procedure at a low energy of fixed Ne(= E / A E )  grows as the system size grows, we will 
know at a certain point where the efficiency of the FF technique wins over as the size of 
the system grows. 

In general, the standard procedure is sufficient for a system of moderate size with low 
coordination number. On the other hand, when the coordination number or the number of 
spin states increases, the w technique becomes far more efficient for systems of even smaller 
size at low microcanonical temperatures. However, when the microcanonical temperature 
is reasonably high, the efficiency of the standard procedure wins over due to the time 
consuming updating procedure of the double table in the FF procedure. 

The RF MC method has been successfully used to calculate the universal scaling functions 
for the threestate Potts model on a square lattice of the size up to 33 x 33 [SI, where the 
width of the energy band (8) necessary to avoid repeated sampling at the data collecting 
layers (9) is the same as that of the BlumeXapel~model. We have also used the RF technique 
to calculate the complex scaling partition function in the complex temperature plane for the 
d = 3 king model on a simple cubic lattice of sizes up to 24 x 24 x 24 [9]. 

In the following tables we present a test result which compares the efficiency of two 
algorithms at various energies (microcanonical temperatures) for two different system sizes 
using the spin-; king model on a simple cubic lattices with periodic boundary conditions. 
For test purposes, we took only a small number of data points to save the computing time. 
In real simulations, 120 to 1200 times more data are collected [9]. 

The first column in tables 2 and 3 is the number of data points, Ndmr the number of visits 
at the lower layer of (9) for each Ne. In the second column we placed Ne values together with 
the microcanonical temperatures defined by T,, = ((In Q(N,+ 1) -In n(N, - l))/S)-' in 
the bracket. The exact In(Q(N,)) are calculable from the low-temperature series expansion 
coefficient [lo] up to N. = 18, and are placed in the third column. Up to this value, 
we calculated percentage relative deviations of the MC calculations liom the known exact 
values for In(Q(N,)) in the bracket in the fourth and sixth columns while for the N. values 
larger than 18, the percentage relative deviation in the results obtained by two procedures 
are calculated and placed in the third column. The Q (N& are not normalized for Ne z 18. 
In the fifth and seventh column we put the computing time for the two procedures, and the 
last column is the ratio of these two numbers which is a relative measure of the efficiency 
of the two algorithms. They are real computing times (in s) on a pc(i80486). 

It is noteworthy that when the microcanonical temperature is about 3.25 the two 

of 2q steps. 



4840 K-C Lee 

Table 2. The comparison fable of efficiency of two algorithm for N = IO3. 

Nd.,IO-3 M T d J  I n ( W N & d  I n ( n ( N M  k In(WN,),td) tstd f,td/t.f 

20 15(3.55) 30.3852 30.4076(0.074%) 13 30.3802(-0.016%) 67 5.2 
20 16(2.91) 29.8183 29.7911(-0.091%) 243 29,8346(0.055%) 1146 4.7 
20 l7(1.42) 33.0714 33.W66(-0.196%) 82 32.9876(-0.253%) 354 4.3 
20 lS(3.38) 35.4845 35.51 18(0.077%) 17 35.5541(0.196%) 72 4.2 

20 lOl(3.25) (O.M8%) 31.2900 47 31.2989 46 1.0 
U) lDZ(3.26) (-0.030%) 325340 47 32.5243 47 1.0 
U) im(3.23) (-o.Dz~%) 33.7633 47 33.7553 47 ID 

20 748(410.26) (-0.175%) 27.9001 19 27.8514 5 03 
20 749(352.33) (-0.141%) 27.8983 19 27.8589 6 0.3 
20 750(690.99) (-0.092%) 27.8998 19 27.8741 5 0.3 

Table 3. The comparison table of efficiency of two algorithms for N = Z03. 

~ ~ ~ 1 0 - 3  N ~ G J  In(Q(N&d In(Q(N.Id t* ~ ( W U S M )  tSul t rd t*  

2 150.41) 40.8331 40.8389(0.014%) I 40.8240(-0.0228) 30 30.0 
2 16C2.85) 38.1920 38.2653(0.192%) 197 382856(0.245%) 6820 34.6 
2 17(0.82) 43.5390 433567(-0.648%) 54 43.3550(-0.423%) 1931 35.8 
2 lS(4.08) 48.0244 48.0450(0.043%) 0 47.7215(-0.631%) 24 30.0 

20 84x327) (-0.043%) 38.4099 49 38.3936 47 1 

20 844(3,25) (0.044%) 40.8744 48 40.8924 47 I 
20 843(3.24) (0.041%) 39.6373 49 39.6534 48 I 

20 5998(247.79) (0.180%) 35.9485 20 36.0133 6 0.3 
20 5999(416.29) (0.216%) 35.9591 19 36.0366 6 0.3 
20 6000(-561.02) (0.246%) 35.9441 U) 36.0325 6 0.3 

computing times become equal to each other in both system sizes. In fact it is true for 
all other system sizes. We remark in passing that the microcanonical temperatures at low 
energies are irregular and sometimes become higher than 3.25, as shown in tables 2 and 3. 
The low-energy slowing down in this case is due to the high rejection rate of the padded 
layers above the middle layers where the microcanonical t e m p e r a m  are still low. When 
the system reaches the highest microcanonical temperature at the maximum of Ne,  q N / &  
the standard algorithm becomes about three times faster than the RP algorithm for both sizes. 

4. Conclusion and discussion 

There are several advantages of the double look-up table technique in the MCMC method 
over the conventional MC method [5-71. In the MCMCT, acceptable sites and rejectable 
sites are clearly divided while in the conventional MC technique it is only probabilistically 
classified and has probability that needs to be calculated. The best advantage of all is that in 
the M C M ~  there is a sharp division by energy where the efficiency of one procedure wins 
over the other. 'Iherefore, we can switch from one procedure to the other to maximize the 
efficiency in updating the ensemble. On the other hand, in the canonical Mc setting even 
at moderate temperatures, the ensemble encompasses wide energy layers (see e.g. [3]) and 
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there is no way to apply separate updating procedures to maximize the efficiency. 
We should remark again that the RF technique in the MCMC method does not alter the 

dynamical nature of the random walk. In the RF technique we merely bypass all the wasteful 
trials of the standard procedure of selecting rejectable sites, leaving no effect at all on the 
spin configuration. Therefore, all the properties of the dynamics of the random walk in the 
configurational space in the M" remain intact. 

We should also remark that it doemot matter in what sequence the acceptable sites are 
placed in the look-up table if the random number we use is truly random (uncorrelated to 
any of the previously generated random numbers). In the MCMC method the random number 
generator is least demanding [ 1.31 to the point that thermodynamic functions for the d = 2 
Ising model have been calculated without using a random number generator at all [ 111. It 
is this property that makes the simple Rp updating procedure described in this paper work 
very well, as we saw in the test result as well as in [8,9], even if we use random numbers 
of moderately good quality. 

Finally, we emphasize again that in the RF algorithm the width of the microcanonical 
ensemble should not be made less than (8) although it may be ma& larger than (8), since 
there is no way of knowing how often the trial move rejected at the data collecting layers 
(9). had we used the standard algorithm with a narrower band. 

In summary, the RF algorithm in the MCMCT, which bypasses all the wasted trial moves, 
can be enormously efficient at low microcanonical temperatures for systems which have 
large coordination number or large number of spin states. In fact, in a calculation where 
the absolute (normalized) DOS needs to be calculated, such as in [8,9], the RF algorithm is 
an indispensable technique even for a moderate size system. 
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Appendix. A method of updating the double look-up tables 

We fist label N spins by numbers running 1, . . . , N .  Next we construct a double table 
in the form of an array, order[ ] and site[ ] of N elements. We initialize this table by 
putting numbers in the array. Any spin site at any moment belongs to one of q + 1 classes. 
We arrange them in sequence and put them in order[ 1. The spins belonging to the same 
class may be placed initially in any order. There are movable partitions which separate 
the classes. The movable partitions may be constructed using an array boundary[ ] of 
size q + 1 indexed from -q /2  to q / 2 .  For convenience we use 6 E  for the index k of the 
array boundary representing the class. The array boundary[k] contains the smallest of the 
indices of spins belonging to the kth class in order[ 1. 

Now we construct another table, site[ 1, which is an array that contains indices of the 
array, order[ 1, in positions indexed by a number which is the label of the lattice site. 
They are cross reference tables so that i = site[order[i]] and i = order[[site[i]] .  

Let us suppose that we are taking data in a microcanonical ensemble labelled by the 
integer Nc measured in the unit of AE = 45. The energy layers in the band are labelled by 
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an integer p which takes values from [-q/2, q/2+ I] so that the microcanonical ensemble 
consists of q + 2 energy layers specified by (Ne  + p ) s .  Suppose that our system is at the 
pth layer. Then we should select a spin site from the classes in order[ I whose k value 
lies in 

[kmin,k-l (10) 
where krmn = max{-q/2, p - 4/21 and k,, = min{q/2,q/2 + 1 - p i .  If we 
generate a random number i in the interval [boundary[kmiJ, boundary[k,, f 11 - I ]  
(or [boundary[kh& NI if km < q/2), then we have a spin site, j = order[ i ] ,  which is 
one of the acceptable sites. 

Now consider the updating part of the double may. If we flip the jth spin, the j th  
site changes the class it belongs to and rearrangement of the order[ ] is necessary. If the 
site belonged to the kth class before flip, it will move to the -kth class after the spin flip. 
This can be achieved by 2k numbers of exchange moves in the order[ 1 .  Suppose k was a 
negative number initially, we can put the element in the 4 t h  class by the following steps. 
We first exchange this element with the element in the highest position in the same class. 
Next, we shift the boundary one downward by decreasing the number in the boundury[k] by 
one. Next, we exchange this element with the element of highest position in the new class 
and shift the boundary again by subfracting one from boundaryrk + I]. This exchange 
move repeats until the element is placed in the lowest position of the class of the final 
destination. This move must accompany the similar exchange move in the array sire[  1. 
The maximum number of exchange moves is q,  which is finite. 

In addition to this updating of the very spin that flipped, we have to update the q 
interacting neighbours of the central spin that flipped. The position of neighbouring spins 
in the order[ ] can be found by reading values s i t e [ j  f 1 1 ,  etc. To q neighbouring spins, 
since only one of the surrounding spins has changed its state, they move to one of the 
adjacent classes in order[ 1 ,  Therefore, we only need q number of  exchange moves of 
the double m a y  for the neighbouring spins. Altogether, we need to perform a maximum 
of 2q numbers of exchange moves of the double array accompanying the same number of 
updating steps for the partition. 
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